High-iron biosolids compost-induced changes in lead and arsenic speciation and bioaccessibility in co-contaminated soils.

نویسندگان

  • Sally L Brown
  • Ingrid Clausen
  • Mark A Chappell
  • Kirk G Scheckel
  • Matthew Newville
  • Ganga M Hettiarachchi
چکیده

The safety of urban farming has been questioned due to the potential for contamination in urban soils. A laboratory incubation, a field trial, and a second laboratory incubation were conducted to test the ability of high-Fe biosolids-based composts to reduce the bioaccessibility of soil Pb and As in situ. Lead and As bioaccessibility were evaluated using an in vitro assay. Changes in Pb, As, and Fe speciation were determined on select samples after the second laboratory incubation using μ-X-ray fluorescence mapping followed by μ-X-ray absorption near-edge structure (XANES). A compost with Fe added to wastewater treatment residuals (Fe WTR compost) added to soils at 100 g kg decreased Pb bioaccessibility in both laboratory incubations. Mixed results were observed for As. Composts tested in the field trial (Fe added as Fe powder or FeCl) did not reduce bioaccessible Pb, and limited reductions were observed in bioaccessible As. These composts had no effect on Pb bioaccessibility during the second laboratory incubation. Bulk XANES showed association of Pb with sulfates and carbonates in the control soil. μ-XANES for three points in the Fe WTR amended soil showed Pb present as Fe-sorbed Pb (88 and 100% of two points) and pyromorphite (12 and 53% of two points). Bulk XANES of the Fe WTR compost showed 97% of total Fe present as Fe. The results of this study indicate that addition of high-Fe biosolids compost is an effective means to reduce Pb accessibility only for certain types of Fe-rich materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lead Speciation and In Vitro Bioaccessibility of Compost-Amended Urban Garden Soils.

In situ soil amendments can modify the Pb bioavailability by changing soil Pb speciation. Urban soils from three vegetable gardens containing different total Pb concentrations were used. The study evaluated how compost amendment and aging of soil-compost mixture in situ affected the following: (i) soil Pb speciation in the field and (ii) change of soil Pb speciation during an in vitro bioaccess...

متن کامل

Relative Bioavailability and Bioaccessibility and Speciation of Arsenic in Contaminated Soils

BACKGROUND Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailab...

متن کامل

Assessment of In Situ Immobilization of Lead (Pb) and Arsenic (As) in Contaminated Soils with Phosphate and Iron: Solubility and Bioaccessibility

The effect of in situ immobilization of lead (Pb) and arsenic (As) in soil with respectively phosphate and iron is well recognized. However, studies on combined Pb and As-contaminated soil are fewer, and assessment of the effectiveness of the immobilization on mobility and bioaccessibility is also necessary. In this study, a Pb and As-contaminated soil was collected from an abandoned lead/zinc ...

متن کامل

Biosolids compost amendment for reducing soil lead hazards: a pilot study of Orgro amendment and grass seeding in urban yards.

In situ inactivation of soil Pb is an alternative to soil removal and replacement that has been demonstrated in recent years at industrial sites with hazardous soil Pb concentrations. Most children exposed to elevated soil Pb, however, reside in urban areas, and no government programs exist to remediate such soils unless an industrial source caused the contamination. Modern regulated biosolids ...

متن کامل

Bioaccessibility and Human Exposure Assessment of Cadmium and Arsenic in Pakchoi Genotypes Grown in Co-Contaminated Soils

In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi (Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi culture...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2012